

EMC TEST REPORT

Equipment LED Bulb

Trademark

Model No. YR-QP01, YR-QP02, YR-QP03, YR-QP04, YR-QP05, YR-QP06

Report No. CTB200605016EX

Applicant

Manufacturer

Prepared by Shenzhen CTB Testing Technology Co., Ltd.

Floor 1&2, Building A, No. 26 of Xinhe Road, Xinqiao Street, Baoan

District, Shenzhen China Tel: 086-4008-258-12 Fax: 086-0755-23208027

Date of Receipt Jun. 03, 2020

Date of Test(s) Jun. 04, 2020 ~ Jun. 05, 2020

Date of Issue Jun. 06, 2020

Test Standard(s) EN 55015:2013+A1:2015, EN 61547:2009

EN 61000-3-2:2014, EN 61000-3-3:2013

In the configuration tested, the EUT complied with the standards specified above.

Producer : , Date : Jun. 06, 2020

Lisa Deng/ Eligineer

Signatory: Date: Jun. 06, 2020

Sherwing

Note: The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report shall not be reproduced except in full, without prior written approval of CTB. This document may be altered or revised by CTB, personnel only, and shall be noted in the revision of the document.

City District			Page 2	32 0 CS	Керс	ort NO '	C1B200	16U3U16E	
				Revision	History				
đ	Rev.	Issue Date	S . S	Revisions	57 5	Effect	Page	Rev	ised By
	0	Jun. 06, 2020	9 4	Initial Issue	,	All P	age	Sher	win Qian
c T	o"	0'0'	C' C'	0 0	0 0	67	07 (57 6	0
<u>- ا</u>	CLA	Car Car	5 TO TO	CAR CAR	6 6 6 F	CAN	ciston (of To	5 TO 15

Table of Contents

1.	TEST	T SUMMARY	
2.	GEN	ERAL INFORMATION	
	2.1.	Description of EUT	
	2.2.	Test conditions	
	2.3.	Block diagram of EUT configuration	
3.	FACI	ILITIES	
	3.1.	Test Facility	
	3.2.	Test Instruments	
4.	Meas	surement uncertainty	
5.	Emis	sion	
	5.1.	Insertion loss	
	5.2.	Disturbance voltage	
	5.3.	Radiated electromagnetic disturbances (9KHz to 30MHz)	1
	5.4.	Radiated electromagnetic disturbances (30MHz to 300MHz)	1
	5.5.	Harmonic current emissions	1
	5.6.	Voltage changes, voltage fluctuations and flicker	1
6.	Imm	unity	2
	6.1.	Electrostatic discharge	
	6.2.	Radio-frequency electromagnetic field	
	6.3.	Power frequency magnetic fields	24
	6.4.	Fast transients	
	6.5.	Injected currents (radio-frequency common mode)	2
	6.6.	Surges	
	6.7.	Voltage dips and Short interruptions	30
7.	Phot	ographs of test setup	3

1. TEST SUMMARY

	EN 55015	
Clause	Requirement – Test case	Results
4.2	Insertion loss	N/A
4.3.1	Disturbance voltage at mains terminals "*"	Pass
4.3.2	Disturbance voltage at load terminals	N/A
4.3.3	Disturbance voltage at control terminals	N/A
4.4.1	Radiated electromagnetic disturbances (9 kHz to 30 MHz) "*"	Pass
4.4.2	Radiated electromagnetic disturbances (30 MHz to 300 MHz) "*"	Pass
Annex B	Independent method of measurement of radiated emission (CDNE)	N/A
	EN 61000-3-2	
Clause	Requirement – Test case	Results
6.1	Control principle shall be allowed for the application according to the clause 6.1	N/A
6.2	Harmonic current emissions "*"	N/A
	EN 61000-3-3	
Clause	Requirement – Test case	Results
4	Voltage changes, voltage fluctuations and flicker "*"	N/A
	EN 61547	
Clause	Requirement – Test case	Results
5.2	Electrostatic discharge	Pass
5.3	Radio-frequency electromagnetic fields	Pass
5.4	Power frequency magnetic fields	Pass
5.5	Fast transients	Pass
5.6	Injected currents (radio-frequency common mode)	Pass
5.7	Surges	Pass

Remark: N/A is abbreviation for Not Applicable.

The test was carried out in all the test modes, only the worst data are list in report.

[&]quot;*" The test was carried out in all the test modes, only the worst data are list in report.

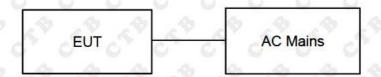
2. GENERAL INFORMATION

2.1. Description of EUT

Equipment	LED Bulb
Trade Mark	Yarrae
Model Name	YR-QP01
Serial No.	Not labeled
Model Difference	All model's the function, software and electric circuit are the same, only with a product color and model named different. Test sample model: YR-QP01.
Normal Voltage	AC 100-240V, 50/60Hz, 7.5W
Normal Testing Voltage	AC 230V/50Hz
Lamp technology used	☐ Fluorescent lamp ☐ High pressure discharge lamp (HID) ☐ Light emitting diode (LED/OLED) ☐ Tungsten halogen lamp ☐ Incandescent lamp ☐ Others: LED Bulb

Note: The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Operating condition of EUT


Test mode	Description
10	ON
2	
3	TO STATE OF THE ST
4	

2.2. Test conditions

Temperature: 15-25°C Relative Humidity: 30-60 %

Atmospheric pressure: 800hPa-1060hPa

2.3. Block diagram of EUT configuration

3. FACILITIES

3.1. Test Facility

CTB-LAB

Floor 1&2, Building A, No. 26 of Xinhe Road, Xinqiao Street, Baoan District, Shenzhen China

3.2. Test Instruments

Conducted Emission Measurement (Test software: EZ-EMC Ver. EMC-con3A1.1)

Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
1	AMN	ROHDE&SCHWARZ	ESH3-Z5	831551852	20201030
2	Pulse limiter	ROHDE&SCHWARZ	ESH3Z2	357881052	20201030
3	EMI TEST RECEIVER	ROHDE&SCHWARZ	ESCI	100428/003	20201102
4	Coaxial cable	ZDECL	Z302S	18091904	20201030
5	AAN	Schwarzbeck	NTFM8158	183	20200506

Radiated Emission Measurement (Test software: EZ-EMC Ver. FA-03A2 RE)

Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
1	2m Triple-Loop Antenna	Daze	ZN30401	17014	20201102
2	TRILOG Broadband Antenna	Schwarzbeck	VULB 9168	869	20201102
4	Amplifier	HP	8447E	2945A02747	20201101
5	EMI TEST RECEIVER	ROHDE&SCHWARZ	ESPI7	100362	20201101
6	Coaxial cable	ETS	RFC-SNS-100 -NMS-80 NI	To City Co	20201101
7	Coaxial cable	ETS	RFC-SNS-100 -NMS-20 NI		20201101
8	Coaxial cable	ETS	RFC-SNS-100 -SMS-20 NI	circ	20201101
9	Coaxial cable	ETS	RFC-NNS-10 0-NMS-300 NI	ci c	20201101

Harmonic Current & Voltage Fluctuation and Flicker (Test software: EZ-EMC Ver. FA-03A2 RE)

3	Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
	1	Power Analyzer	Laplace Instruments	AC2000A	311363	20201223
4	2	AC Power source	HTEC Instruments	HPF5010	633088	20201223

Electrostatic Discharge Test

Item	Equipment Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
91	ESD Simulator	TESTQ	NSG437	329	20201030

Conducted RF Test

Item	Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
51	Signal Generator	Agilent	N5182A	MY47420195	2020.10.30
2	Power Amplifier	AR	75A 250A	320289	2020.10.30

3	Attenuator	EM-Test	ATT6/75	320835	2020.10.30
4	CDN	EM-Test	CDN M2/M3	0208-01	2020.10.30
5	EM-Clamp	EM-Test	EM101	35762	2020.10.30

RF electromagnetic field Test

Item	Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Signal Generator	Agilent	N5182A	MY47420195	2020.10.30
2	Log-Bicon Antenna	Schwarzbeck	VULB9161	9128ES-128	2020.10.30
3	Power Amplifier	AR	150W1000M1	342526	2020.10.30
4	Microwave Horn Antenna	AR	AT4002A	322279	2020.10.30
5	Power Amplifier	AR	25S1G4A	321116	2020.10.30

Surge& Electrical Fast Transient/Burst Immunity Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
1	Surge& Burst Generator	Lioncel	LSG-545CB	180602	20201030
2	Capacitive coupling clamp	Lioncel	EFTC	18071801	20201030

Power frequency magnetic field

Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
1	Magnetic field generator	Lioncel	PMF-801C-C	180701	20201101

Voltage dips and interruptions Test

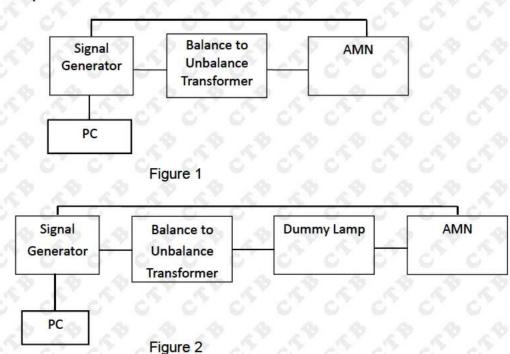
Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
1	Voltage dip simulator	Lioncel	VDS-1102	180902	20201030

4. Measurement uncertainty

The following table is for the measurement uncertainty, which is calculated as per the document CISPR 16-4.

Test	Parameters	Expanded Uncertainty (U _{Lab})	Expanded Uncertainty (U _{Cispr})
Conducted Emission	Level Accuracy: 150kHz to 30MHz	±1.22 dB	±3.6 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±3.67 dB	±5.2 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.79 dB	N/A

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.


5. Emission

5.1. Insertion loss

5.1.1. Limit

Frequency range kHz	Minimum values dB
150 to 160	
160 to 1 400	28 to 20 ^a
1 400 to 1 605	20

5.1.2. Test setup

5.1.3. Test procedure

Set up and test as shown in Figure 1 and figure 2, and Test results are calculated using test software

Attention:

This test applies to fluorescent lamp products, halogen lamps are not applicable.

Both sides of AC line are checked to find out the maximum conducted emission according to the EN55015 regulations during Insertion Loss test.

The bandwidth of the test receiver (R&S ESCS30) is set at 10KHz in 150KHz~1605KHz and 200Hz bandwidth in 9KHz~150KHz.

The frequency range from 150KHz to 1605KHz is checked.

5.1.4. Test results

N/A

EUT not applicable to this test.

5.2. Disturbance voltage

5.2.1. Limit

Disturbance voltage limits at mains terminals

Frequency range		nits µV) ^a
	Quasi-peak	Average
9KHz to 50KHz	110	A A A A
50KHz to 150KHz	90 ~ 80 ^b	"4" "4" " 4" "4"
150KHz to 0.5MHz	66 ~ 56 ^b	56 ~ 46 ^b
0.5MHz to 5MHz	56 c	46 ^c
5.0MHz to 30MHz	60	50

At the transition frequency, the lower limit applies.

Disturbance voltage limits at control terminals

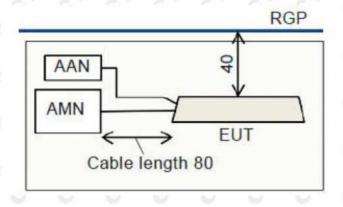
Frequency range		mits BµV) ^a
MHz	Quasi-peak	Average
0,15 to 0,5	80	70
0,5 to 30	74	64

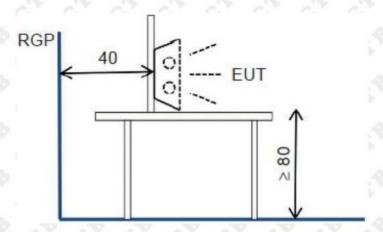
Disturbance voltage limits at control terminals

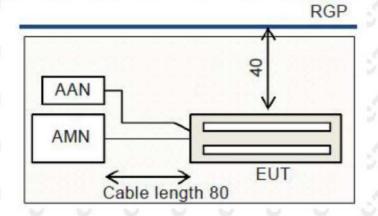
Frequency range		nits BµV) ^a
MHz	Quasi-peak	Average
0,15 to 0,5	80 to 74	74 to 64
0,5 to 30	74	64

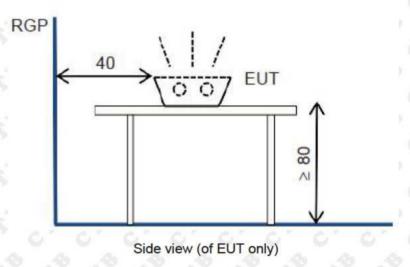
NOTE 1 The limits decrease linearly with the logarithm of the frequency in the range 0,15 MHz to 0,5 MHz.

NOTE 2 The voltage disturbance limits are derived for use with an Asymmetric Artificial Network (AAN) which presents a common mode (asymmetric mode) impedance of 150 Ω to the control terminal.


The limit decreases linearly with the logarithm of the frequency in the ranges 50 kHz to 150 kHz and 150 kHz to 0,5 MHz.


For electrodeless lamps and luminaires, the limit in the frequency range of 2,51 MHz to 3,0 MHz is 73 dB(μV)




5.2.2. Block diagram of test setup

Report No.: CTB200605016EX

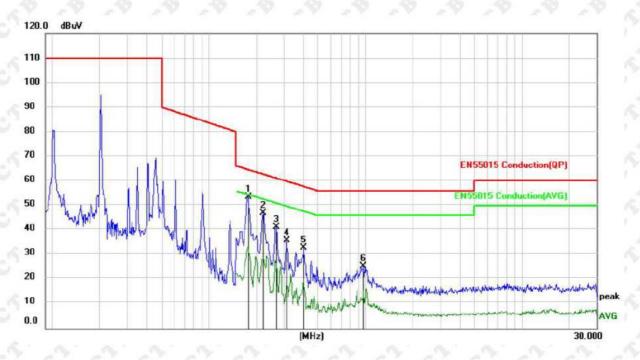
Top view

5.2.3. Test procedure

Measurement was performed in shielded room, and instruments used were followed CISPR 16-2-1 clause7.

Detailed test procedure was following clause 7 of CISPR 16-2-1.

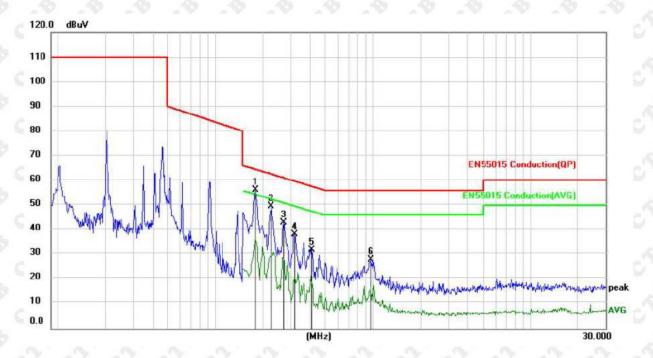
Frequency range 9kHz to 30MHz was checked and EMI receiver measurement bandwidth was set to 200Hz (9 to 150kHz), 9kHz (150kHz to 30MHz).


5.2.4. Test results

PASS

Please refer to the following page.

Phase: L


	Margin	Limit	Measure- ment	Correct Factor	Reading Level	Freq.	Mk.	No.
Detecto	dB	dBuV	dBuV	dB	dBuV	MHz		
peak	-10.95	64.57	53.62	10.21	43.41	0.1781	*	1
peal	-15.86	62.74	46.88	10.21	36.67	0.2221		2
peal	-19.91	61.11	41.20	10.17	31.03	0.2701		3
peak	-23.99	59.86	35.87	10.15	25.72	0.3141		4
peal	-24.97	57.73	32.76	10.10	22.66	0.4061		5
peak	-30.58	56.00	25.42	10.22	15.20	0.9741		6

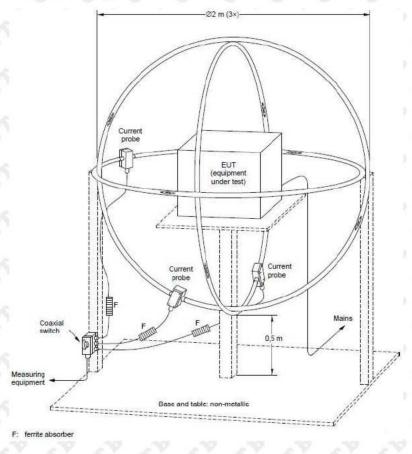
Note: Result=Reading + Factor
Over Limit=Result - Limit

Phase: N

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	*	0.1781	46.13	10.21	56.34	64.57	-8.23	peak
2		0.2261	39.54	10.20	49.74	62.59	-12.85	peak
3		0.2701	32.79	10.17	42.96	61.11	-18.15	peak
4		0.3181	28.01	10.15	38.16	59.76	-21.60	peak
5		0.4101	21.90	10.10	32.00	57.65	-25.65	peak
6		0.9741	17.90	10.22	28.12	56.00	-27.88	peak

Note: Result=Reading + Factor
Over Limit=Result – Limit

5.3. Radiated electromagnetic disturbances (9KHz to 30MHz)


5.3.1. Limit

Radiated disturbance limits in the frequency range 9 kHz to 30 MHz

Limits for loop diameter (dBµA) ^a
2m
88
88 ~ 58 ^b
58 ~ 22 ^b
22

a At the transition frequency, the lower limit applies.

5.3.2. Block diagram of test setup

5.3.3. Test procedure

The EUT is placed on a wood table in the center of a loop antenna. The induced current in the loop antenna is measured by means of a current probe and the test receiver. Three axes of X Y Z are tested by coaxial switch.

The frequency range from 9KHz to 30MHz is investigated. The receiver is measured with the quasi-peak detector. For frequency band 9KHz to 150KHz, the bandwidth of the field strength meter (R&S test receiver ESCI) is set at 200Hz. For frequency band 150KHz to 30MHz, the bandwidth is set at 9KHz.

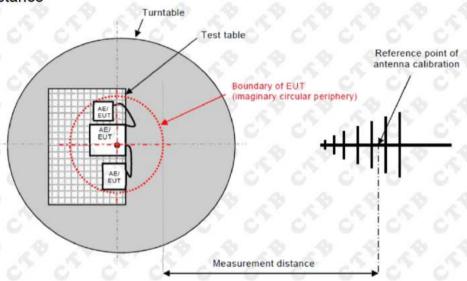
5.3.4. Test results

PASS

The peak value is too low against the limit, so the Test data is not record.

Decreasing linearly with the logarithm of the frequency. For electrodeless lamps and luminaires, the limit in the frequency range of 2,2MHz to 3,0MHz is 58dB(dBµA) for 2m.

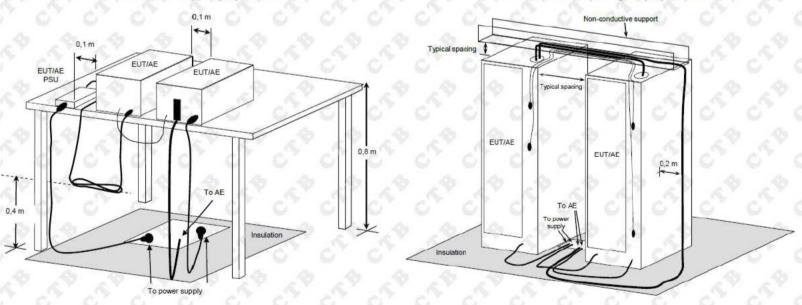
5.4. Radiated electromagnetic disturbances (30MHz to 300MHz)


5.4.1. Limit

Frequency range	Quai-peak limits (dBµV/m) ^a
MHz	3m ^{b, c}
30 to 230	40
230 to 300	47

At the transition frequency, the lower limit applies.

5.4.2. Block diagram of test setup


Measurement distance

For table-top equipment

For floor standing equipment

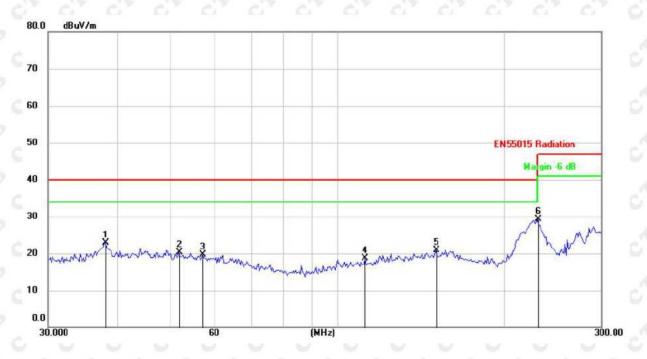
Report No.: CTB200605016EX

b Either of the two measurement distances and the associated limits can be applied to demonstrate compliance.

^c Care should be taken when measuring a large EUT at 3 m and at frequencies near 30 MHz due to near field effects

5.4.3. Test procedure

The measurement was performed in a semi-anechoic chamber. The distance from EUT to receiving antenna is 3 meters. Measurement was performed according to clause 7.3 of CISPR 16-2-3.


5.4.4. Test results

PASS

Please refer to the following page.

Polarization: H

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	Ţ.
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		38.1172	29.05	-6.12	22.93	40.00	-17.07	peak
2		51.6561	26.56	-6.22	20.34	40.00	-19.66	peak
3		57.1638	26.23	-6.57	19.66	40.00	-20.34	peak
4		112.4919	26.92	-8.26	18.66	40.00	-21.34	peak
5		150.3562	27.27	-6.32	20.95	40.00	-19.05	peak
6	*	229.6790	36.71	-7.38	29.33	40.00	-10.67	peak

Note: Result=Reading+Factor Over Limit=Result-Limit

Polarization: V

Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	
	MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
*	38.1172	39.73	-6.12	33.61	40.00	-6.39	peak
	45.1982	32.36	-5.80	26.56	40.00	-13.44	peak
	58.4953	28.78	-6.66	22.12	40.00	-17.88	peak
	95.7461	29.33	-9.76	19.57	40.00	-20.43	peak
2	204.7016	35.97	-9.08	26.89	40.00	-13.11	peak
	231.8042	35.84	-7.23	28.61	47.00	-18.39	peak
	*	* 38.1172 45.1982 58.4953	Mk. Freq. Level MHz dBuV * 38.1172 39.73 45.1982 32.36 58.4953 28.78 95.7461 29.33 204.7016 35.97	Mk. Freq. Level Factor MHz dBuV dB * 38.1172 39.73 -6.12 45.1982 32.36 -5.80 58.4953 28.78 -6.66 95.7461 29.33 -9.76 204.7016 35.97 -9.08	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m * 38.1172 39.73 -6.12 33.61 45.1982 32.36 -5.80 26.56 58.4953 28.78 -6.66 22.12 95.7461 29.33 -9.76 19.57 204.7016 35.97 -9.08 26.89	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dB/m * 38.1172 39.73 -6.12 33.61 40.00 45.1982 32.36 -5.80 26.56 40.00 58.4953 28.78 -6.66 22.12 40.00 95.7461 29.33 -9.76 19.57 40.00 204.7016 35.97 -9.08 26.89 40.00	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV/m dB/m dB * 38.1172 39.73 -6.12 33.61 40.00 -6.39 45.1982 32.36 -5.80 26.56 40.00 -13.44 58.4953 28.78 -6.66 22.12 40.00 -17.88 95.7461 29.33 -9.76 19.57 40.00 -20.43 204.7016 35.97 -9.08 26.89 40.00 -13.11

Note: Result=Reading+Factor Over Limit=Result-Limit

5.5. Harmonic current emissions

5.5.1. Test Setup

5.5.2. Test specifications

Basic Standard(s) : EN 61000-3-2:2014 Measurement Equipment requirement : IEC 61000-4-7

Measured Harmonics : 1 - 40

Equipment Class : \square A \boxtimes C

Limits : ⊠ Clause 7.1 Table 1

☐ Clause 7.3 Table 2

Report No.: CTB200605016EX

5.5.3. Test Procedure

Harmonics of the fundamental current were measured up to 40 order harmonics using a digital power meter with an analogue output and frequency analyzer which was integrated in the harmonic & flicker test system. The measurements were carried out under steady conditions.

☐ Active input power > 25 W

5.5.4. Test Result

N/A.

There is no limit described in EN 61000-3-2:2014 for class C equipment below 25W other than discharge lighting equipment, so this test is not applicable.

5.6. Voltage changes, voltage fluctuations and flicker

5.6.1. Test Setup

5.6.2. Test Procedure

Basic Standard(s) : EN 61000-3-3:2013
Measurement Equipment requirement : IEC 61000-4-15

Limits : Clause 5

5.4.2.1 Definition

Flicker: impression of unsteadiness of visual sensation induced by a lighting stimulus whose luminance or spectral distribution fluctuates with time.

P_{st}: Short-term flicker indicator the flicker severity evaluated over a short period (in minutes); P_{st}=1 is the conventional threshold of irritability

P_{It}: long-term flicker indicator; the flicker severity evaluated over a long period (a few hours) using successive P_{st} values.

dc: the relative steady-state voltage change

d_{max}: the maximum relative voltage change

d(t): the value during a voltage change

5.4.2.2 Test Precedure

The following limits apply

- -- "P_{It}" shall not exceed 0.65.
- -- "Pst" shall not exceed 1.0.
- -- "dc" shall not exceed 3.3%.
- -- "d(t)" shall not exceed 3.3% for more than 500ms.
- -- "d_{max}" shall not exceed:

38	☐ 4% without additional conditions,
	☐ 6% switched manually or automatically more than twice per day,
	☐ 7% attended whilst in use or switched automatically for no more than twice per day or
	attended while in use.
	☐ For manual switch, dmax is measured in accordance with Annex B of standard,
	average dmax is calculated from 24 times measurement.
	Make the EUT is unlikely to produce significant voltage fluctuations or flicker by technical
	analysis and evaluation. So it is deemed to fulfil the requirements without testing.

5.6.3. Test Result

N/A

According to EN 61000-3-3:2013, clause A.2* the voltage fluctuation and flicker on AC Mains were not measured.

EN 61000-3-3:2013, clause A.2: P_{st} and P_{lt} evaluations are required only for lighting equipment which is likely to produce flicker; for example: disco lighting and automatically regulated equipment.

Incandescent lamp luminaires with ratings less than or equal to 1 000 W and discharge lamp luminaires with ratings less than or equal to 600 W and LED luminaires with ratings less than or equal to 200W, are deemed to comply with the d_{max} limits in this standard and are not required to be tested.

6. Immunity

Performance criteria

Performance criterion A

The equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

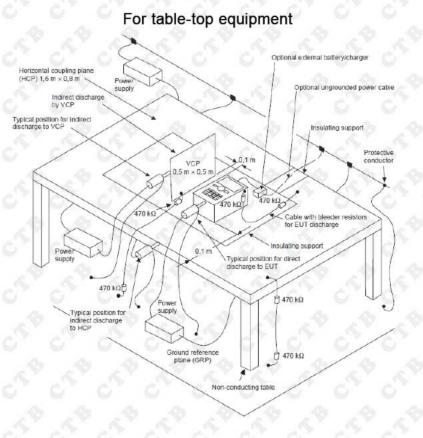
Performance criterion B

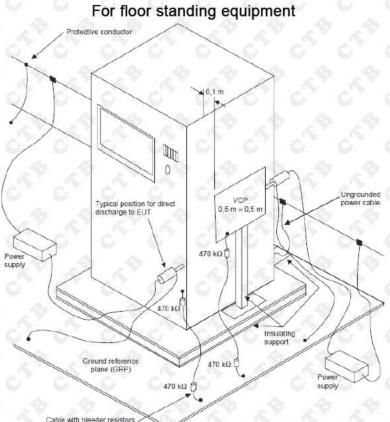
After the test, the equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed, after the application of the phenomena below a performance level specified by the manufacturer, when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is allowed. However, no change of operating state or stored data is allowed to persist after the test. If the minimum performance level (or the permissible performance loss) is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

Performance criterion C

Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions. Functions, and/or information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

for EUT discharge


6.1. Electrostatic discharge


6.1.1. Test Levels and Performance Criterion

Characteristics	Test levels		
Air discharge	±8 kV		
Contact discharge	±4 kV		

Performance criterion: B

6.1.2. Test setup

6.1.3. Test Procedure

Measurement was performed in shielded room.

Measurement procedure was applied according to EN 61000-4-2 clause 8.

The test method and equipment were specified by EN 61000-4-2.

6.1.4. Test Result

PASS

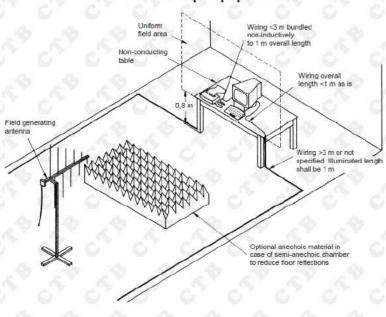
Please refer to the following page.

No.	Location of discharge	Polarity	Discharge	Number of discharges	Test level kV	Result
1	HCP top side	P&N	С	25	4	PASS
3	HCP bottom side	P&N	С	25	4	PASS
5	VCP right side	P&N	С	25	4	PASS
7	VCP left side	P&N	CO	25	4	PASS
9	Points on conductive surface	P&N	С	25	4	PASS
10	Points on non-conductive surface	P&N	Α	10	8	PASS

HCP = Horizontal coupling plate VCP = Vertical coupling plate N = Negative P = Positive

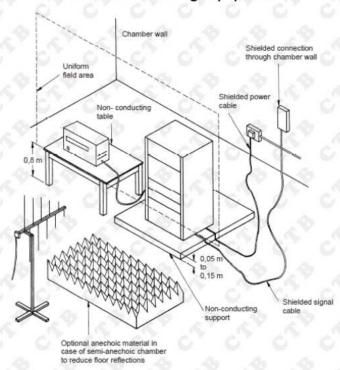
A = Air discharge C = Contact discharge

6.2. Radio-frequency electromagnetic field


6.2.1. Test Levels and Performance Criterion

Characteristics	Test levels		
Frequency range	80 MHz to 1 000 MHz		
Test level	3 V/m (unmodulated)		
Modulation	1 kHz, 80 % AM, sine wave		

Performance criterion: A


6.2.2. Test setup

For table-top equipment

For floor standing equipment

Report No.: CTB200605016EX

6.2.3. Test Procedure

Measurement was performed in full-anechoic chamber.

Measurement procedure was applied according to EN 61000-4-3 clause 8.

The test method and equipment was specified by EN 61000-4-3.

6.2.4. Test Result

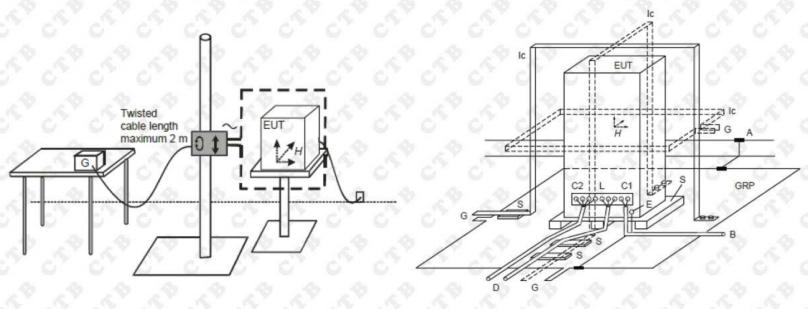
PASS

Enclosure	Horizontal	Vertical
Front	PASS	PASS
Right Side	PASS	PASS
Left Side	PASS	PASS
Rear	PASS	PASS

6.3. Power frequency magnetic fields

6.3.1. Test Levels and Performance Criterion

Characteristics	Test levels
Field frequency	50/60 Hz
Test level	3 A/m


Performance criterion: A

6.3.2. Test setup

For table-top equipment

For floor standing equipment

Report No.: CTB200605016EX

6.3.3. Test Procedure

Measurement was performed in shielded room.

Measurement procedure was applied according to EN 61000-4-8 clause 8.

The test method and equipment was specified by EN 61000-4-8.

6.3.4. Test Result

PASS

Test frequency	Test Level (A/m)	Test time [s]	Axis	Result
⊠ 50Hz □ 60Hz	3,0	300	X X	Pass
⊠ 50Hz □ 60Hz	3	300	Y	Pass
⊠ 50Hz □ 60Hz	3	300	o z	Pass

6.4. Fast transients

6.4.1. Test Levels and Performance Criterion

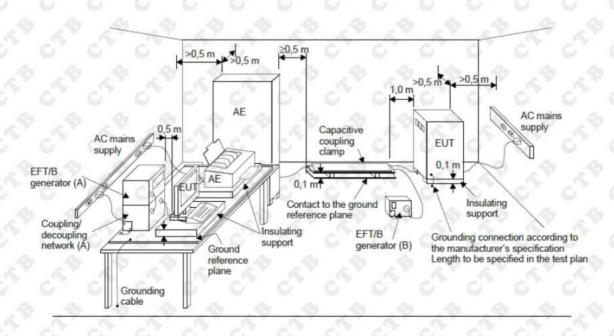
Test levels at ports for signal and control lines

Characteristics	Test levels
Test level	±0.5 kV (peak)
Rise time/hold time	5/50 ns
Repetition frequency	5 kHz

NOTE 1 Only applicable to ports interfacing with cables whose total length, according to the manufacturer's specification, may exceed 3 m.

NOTE 2 Change of state commands are not applied during the test.

Test levels at input and output d.c. power ports


Characteristics	Test levels
Test level	±0.5 kV (peak)
Rise time/hold time	5/50 ns
Repetition frequency	5 kHz

Test levels at input and output a.c. power ports

Characteristics	Test levels		
Test level	±1 kV (peak)		
Rise time/hold time	5/50 ns		
Repetition frequency	5 kHz		

Performance criterion: B

6.4.2. Test setup

6.4.3. Test Procedure

Measurement was performed in shielded room.

Measurement procedure was applied according to EN 61000-4-4 clause 8.

The test method and equipment was specified by EN 61000-4-4.

6.4.4. Test Result

PASS

Location	Level (kV)	Polarity (P/N)	Result	
AC power ports	9 9 19	P/N	Pass	
DC power ports	0,5	P/N	N/A	
Signal and control lines	0,5	P/N	N/A	

6.5. Injected currents (radio-frequency common mode)

6.5.1. Test Levels and Performance Criterion

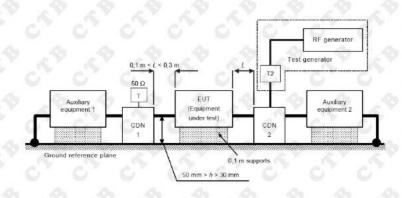
Test levels at ports for signal and control lines

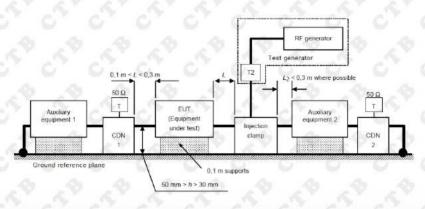
Characteristics	Test levels		
Frequency range	0.15 MHz to 80 MHz		
Test level	3 V r.m.s. (unmodulated)		
Modulation	1 kHz, 80 % AM, sine wave		
Source impedance	150 Ω		
NOTE O L LI LI LI LI LI			

NOTE Only applicable to ports interfacing with cables whose total length, according to the manufacturer's specification, may exceed 3 m.

Test levels at input and output d.c. power ports

Characteristics	Test levels	
Frequency range	0.15 MHz to 80 MHz	
Test level	3 V r.m.s. (unmodulated)	
Modulation	1 kHz, 80 % AM, sine wave	
Source impedance	150 Ω	


Test levels at input and output a.c. power ports


Characteristics	Test levels	
Frequency range	0.15 MHz to 80 MHz	
Test level	3 V r.m.s. (unmodulated)	
Modulation	1 kHz, 80 % AM, sine wave	
Source impedance	150 Ω	

NOTE Only applicable to ports interfacing with cables whose total length, according to the manufacturer's specification, may exceed 3 m.

Performance criterion: A

6.5.2. Test setup

6.5.3. Test Procedure

Measurement procedure was applied according to EN 61000-4-6 clause 8.

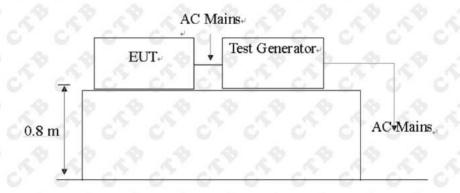
The test method and equipment was specified by EN 61000-4-6.

6.5.4. Test Result

PASS

Injected point	Frequency (MHz)	Level (e.m.f)	Modulation	Result
AC power ports	0.15 to 80	3V	80%, 1 kHz, AM	PASS
DC power ports	0.15 to 80	3V	80%, 1 kHz, AM	N/A
Signal and control lines	0.15 to 80	3V	80%, 1 kHz, AM	N/A

6.6. Surges


6.6.1. Test Levels and Performance Criterion

2 2 C	4 6 6 6	Test	levels	P CP		
Characteristics		Device				
		Salf hallastad lamns	Luminaires and independent auxiliaries Input power			
		Self-ballasted lamps and semi-luminaires				
	0, 0, 0,		≤25 W	>25 W		
Wave-shape data	B 40 40 4	1.2/50 µs	1.2/50 µs	1.2/50 µs		
Test levels	line to line	\pm 0.5 kV	±0.5 kV	±1.0 kV		
	line to ground	±1.0 kV	±1.0 kV	±2.0 kV		

NOTE In addition to the specified test level, all lower test levels as detailed in IEC 61000-4-5 should also be satisfied.

Performance criterion: B

6.6.2. Test setup

6.6.3. Test Procedure

Measurement was performed in shielded room.

Measurement procedure was applied according to EN 61000-4-5 clause 8.

The test method and equipment was specified by EN 61000-4-5.

6.6.4. Test Result

PASS

Location	Level(kV)	Polarity(P/N)	Result
Luminaires and independent auxiliaries >25 W (line to line)	\$ 1,\$	P/N	N/A
Luminaires and independent auxiliaries >25 W (line to ground)	2	P/N	N/A
Luminaires and independent auxiliaries ≤25 W (line to line)	0,5	P/N	Pass
Luminaires and independent auxiliaries ≤25 W (line to ground)	1.0	P/N	N/A
Self-ballasted lamps and semi-luminaires (line to line)	0,5	P/N	N/A
Self-ballasted lamps and semi-luminaires (line to ground)	1.0	P/N	N/A

6.7. Voltage dips and Short interruptions

6.7.1. Test Levels and Performance Criterion

Voltage dips – Test levels at input a.c. power ports

Characteristics	Test levels
Test voltage level	70 %
Number of periods	10

Voltage short interruptions - Test levels at input a.c. power ports

Characteristics	Test levels
Test voltage level	0 %
Number of periods	0.5

Performance criterion: C & B

6.7.2. Test setup

6.7.3. Test Procedure

Measurement was performed in shielded room.

Measurement procedure was applied according to EN 61000-4-11 clause 8.

The test method and equipment was specified by EN 61000-4-11.

6.7.4. Test Result

PASS

Test level	Voltage dips & short interruptions %U _T	Duration [Cycles]	Result
70	30	10	Pass
0	100	0.5	Pass

Remark: U_T is the rated voltage for the equipment.

Test Requested

Test Report

Report No: TST2020052633-3RR Date:Jun.05,2020 Page 1 of 12

The following sample(s) was /were submitted and identified on behalf of the clients as :

Sample Name : LED Bulb

Main Model : YR-QP01 YR-QP02, YR-QP03, YR-QP04, YR-QP05, YR-QP06

Sample Received Date : May.29,2020

Testing Period : May.29,2020 To Jun.05,2020

1. As specified by client ,to screen Lead(Pb), Cadmium(Cd), Mercury(Hg), Chromium(Cr) and Bromine(Br) in the submitted sample(s) by XRF.

2. As specified by client ,when screening results exceed the XRF screening limit in IEC62321-4:2017 Edition 1.0,further use of wet chemical methods are required to test Lead(Pb),Cadmium(Cd),Mercury(Hg),Hexavalent Chromium(Cr(VI)),Polybrominated Biphenyls(PBBs),Polybrominated Diphenyl Ethers(PBDEs),Polybrominated diphenyl ethers (PBDEs) and Phthalates such as Bis(2-ethylhexyl) phthalate (DEHP), Butyl benzyl phthalate (BBP), Dibutylphthalate (DBP),

and Diisobutyl phthalate (DIBP) in the submitted sample(s).

Test Method : Please refer to next page(s).

Test Result : Please refer to next page(s).

Conclusion : The test results comply with the limits of RoHS 2.0 Directive (EU) 2015/863 and (EU)2017/2102 amending Annex II to Directive 2011/65/EU.

Signed for and on behalf of

TECHNOLOGI CONTROVED:

Andy Zheng Technical Director

Report No: TST2020052633-3RR

Date:Jun.05,2020

Page 2 of 12

			_		
No.	Sample Description	Test item	XRF Result	ChemicalTest (mg/kg)	Conclusion
		Pb	BL		
	7 7	Cd	BL	\	
-5	5	Hg	BL	/	r 5 1
1	PCB	Cr(Cr(VI)	BL		Pass
		Br(PBBs&PBDEs)	X	N.D.	
		Phthalate(DBP\BBP \DEHP\DIBP)	- /	N.D.	
	GI	Pb	BL		_ 6
		Cd	BL	1	
		Hg	BL	1/ 2/ _ 1	
2	IC	Cr(Cr(VI)	BL		Pass
		Br(PBBs&PBDEs)	BL	, 	
	GI	Phthalate(DBP\BBP \DEHP\DIBP)		N.D.	67
		Pb	BL		
_10-		Cd	▶ BL		
		Hg	BL	:	
3	Triode	Cr(Cr(VI)	BL		Pass
		Br(PBBs&PBDEs)	BL	1	
	S	Phthalate(DBP\BBP \DEHP\DIBP)	7-5	N.D.	TS
100		Pb	BL	1	1
		Cd	BL	ಿನಕ್ಕ	
		Hg	BL		
4	Resistance	Cr(Cr(VI)	BL	T -	Pass
	5	Br(PBBs&PBDEs)	BL		
		Phthalate(DBP\BBP \DEHP\DIBP)		N.D.	

Repo	rt No : TST2020		est Rep	Ort	3 of 12
No.	Sample Description	Test item	XRF Result	ChemicalTest (mg/kg)	Conclusion
		Pb	BL	-	
		Cd	BL	<u></u>	
	SI	Hg	BL		Description of the second
5	Capacitance	Cr(Cr(VI)	BL		Pass
		Br(PBBs&PBDEs)	BL		
		Phthalate(DBP\BBP \DEHP\DIBP)		N.D.	
		Pb	BL		
	5	Cd	BL	,	TO
		Hg	BL	, -	
6	Inductance	Cr(Cr(VI)	BL	\ 	Pass
		Br(PBBs&PBDEs)	BL		
	CI	Phthalate(DBP\BBP \DEHP\DIBP)		N.D.	
	5	Pb	BL		r 5 1
1		Cd	BL		1
		Hg	BL		
7	Solder	Cr(Cr(VI)	BL		Pass
		Br(PBBs&PBDEs)	1	-	
	S	Phthalate(DBP\BBP \DEHP\DIBP)	T-S		5
	*	Pb	BL		1
		Cd	BL		
	Black electrolytic	Hg	BL		
8	capacitor film	Cr(Cr(VI)	BL	-	Pass
	C 1	Br(PBBs&PBDEs)	BL	L	r 5 1
		Phthalate(DBP\BBP \DEHP\DIBP)	1-	N.D.	

Report No: TST2020052633-3RR Date:Jun.05,2020 Page 4 of 12						
No.	Sample	Test item	XRF Result	ChemicalTest	Conclusion	
	Description	1 0 25	BL	(mg/kg)		
		Pb	BL BL			
		Cd				
9	Black rubber	Hg	BL		Pass	
1	Black rubber	Cr(Cr(VI)	BL		1 433	
		Br(PBBs&PBDEs)	BL			
		Phthalate(DBP\BBP \DEHP\DIBP)		N.D.		
		Pb	BL			
	5	Cd	BL	,	T 5	
		Hg	BL	\- -		
10	Pin	Cr(Cr(VI)	BL	\\.\.\.\.\.	Pass	
		Br(PBBs&PBDEs)				
	T	Phthalate(DBP\BBP \DEHP\DIBP)	-	Τ		
-	5	Pb	BL		r 5 1	
	250	Cd	BL			
		Hg	BL			
11	Aluminum shell	Cr(Cr(VI)	BL		Pass	
		Br(PBBs&PBDEs)	,	T		
	S	Phthalate(DBP\BBP \DEHP\DIBP)	T-S	-	5	
1	*	Pb	BL		1	
		Cd	BL			
		Hg	BL	·		
12	Electrolytic paper	Cr(Cr(VI)	BL	T -	Pass	
	07	Br(PBBs&PBDEs)	BL	.	c 5 1	
		Phthalate(DBP\BBP \DEHP\DIBP)	1.5	N.D.		

Test Report Report No: TST2020052633-3RR Date:Jun.05,2020 Page 5 of 12						
No.	Sample Description	Test item	XRF Result	ChemicalTest (mg/kg)	Conclusion	
	•	Pb	BL			
		Cd	BL			
	SI	Hg	BL			
13	Inductor body	Cr(Cr(VI)	BL		Pass	
		Br(PBBs&PBDEs)	BL	·		
		Phthalate(DBP\BBP \DEHP\DIBP)		N.D.		
		Pb	BL			
	5	Cd	BL	4	TO	
		Hg	BL	, 		
14	Copper wire	Cr(Cr(VI)	BL		Pass	
		Br(PBBs&PBDEs)				
	T	Phthalate(DBP\BBP \DEHP\DIBP)	-	Τ		
	5	Pb	BL	<u> </u>	r 5	
	2.70	Cd	BL			
		Hg	BL			
15	Adhesive tape	Cr(Cr(VI)	BL		Pass	
		Br(PBBs&PBDEs)	BL	T -		
	S	Phthalate(DBP\BBP \DEHP\DIBP)	T-S	N.D.	5	
. 7	*	Pb	BL		1	
		Cd	BL			
		Hg	BL	·		
16	LED	Cr(Cr(VI)	BL		Pass	
	c'1	Br(PBBs&PBDEs)	BL	J	r 5 1	
		Phthalate(DBP\BBP \DEHP\DIBP)	1-	N.D.		

Test Report						
Report No: TST2020052633-3RR Date:Jun.05,2020 Page 6 of 12						
No.	Sample Description	Test item	XRF Result	ChemicalTest (mg/kg)	Conclusion	
		Pb	BL			
		Cd	BL			
	5	Hg	BL		Pass	
17	Silver metal case	Cr(Cr(VI)	BL		rass	
		Br(PBBs&PBDEs)	i			
		Phthalate(DBP\BBP \DEHP\DIBP)				
		Pb	BL			
1		Cd	BL		TO	
		Hg	BL			
18	Wire core	Cr(Cr(VI)	BL		Pass	
		Br(PBBs&PBDEs)				
	a T	Phthalate(DBP\BBP \DEHP\DIBP)	-	T -	aT	
-	5	Pb	BL		r 5	
1		Cd	BL		1	
		Hg	BL			
19	Silver metal sheet	Cr(Cr(VI)	BL		Pass	
		Br(PBBs&PBDEs)		T -		
	5	Phthalate(DBP\BBP \DEHP\DIBP)	T-S	-	5	
. 7		Pb	BL		1	
		Cd	BL			
		Hg	BL			
20	White plastic shell	Cr(Cr(VI)	BL	-	Pass	
	C 1	Br(PBBs&PBDEs)	BL	<u></u>	r 5 1	
		Phthalate(DBP\BBP \DEHP\DIBP)	1 -	N.D.		

Repo	rt No : TST2020		est Rep	Ort	7 of 12
No.	Sample Description	Test item	XRF Result	ChemicalTest (mg/kg)	Conclusion
		Pb	BL	-	
		Cd	BL	<u></u>	
	SI	Hg	BL		Pass
21	White plastic	Cr(Cr(VI)	BL		rass
		Br(PBBs&PBDEs)	BL		
		Phthalate(DBP\BBP \DEHP\DIBP)		N.D.	
		Pb	BL		
		Cd	BL	4	TO
1		Hg	BL	· 	
22	Ink	Cr(Cr(VI)	BL	√ इ.स .	Pass
		Br(PBBs&PBDEs)	BL	-	
		Phthalate(DBP\BBP \DEHP\DIBP)		N.D.	aT
	5	Pb	BL		
1		Cd	BL	N as .	
		Hg	BL	-	
23	White paint	Cr(Cr(VI)	BL		Pass
		Br(PBBs&PBDEs)	BL	-	
	S	Phthalate(DBP\BBP \DEHP\DIBP)	T-S	N.D.	5
. 7	* · · · · · · · · · · · · · · · · · · ·	Pb	BL		1
		Cd	BL	- 22	
		Hg	BL	i j e u r	
24	Glue	Cr(Cr(VI)	BL	-	Pass
	C 1	Br(PBBs&PBDEs)	BL	<u> </u>	r 5 1
		Phthalate(DBP\BBP \DEHP\DIBP)	1-	N.D.	

Report No: TST2020052633-3RR Date:Jun.05,2020 Page 8 of 12

- 1. It is the result on total Br while test item on restricted substances in PBBs/PBDEs.It is the result on total Cr while test item on restricted substances is Cr(VI).
- 2. Screening test by XRF spectroscopy

XRF screening limits in mg/kg for regulated elements according to IEC62321-4:2017 Ed.1 Sec.6 & AnnesD.

Element	Polymer Material	Metallic Material	Composite Material
DI-	BL≤700-3σ≤X<	BL≤700-3σ≤X<	BL≤500-3σ≤X<
Pb	1300+3σ≤OL	1300+3σ≤OL	1500+3σ≤OL
Cd	BL \leq 70-3 σ \leq X $<$ 130+3 σ \leq OL	BL≤70-3σ≤X<130+3σ≤OL	$LOD \le X \le 150 + 3\sigma \le OL$
Ша	BL≤700-3σ≤X<	BL≤700-3σ≤X<	BL≤500-3σ≤X<
Hg	1300+3σ≤OL	1300+3σ≤OL	1500+3σ≤OL
Cr	BL≤700-3σ< X	BL≤700-3σ< X	BL \leq 500-3 σ < X
Br	BL≤300-3σ< X		BL \leq 250-3 σ < X

XRF detection limits in mg/kg for regulated elements in various material

Element	Polymer Material	Metallic Material	Composite Material
Pb	10	50	50
Cd	10	50	50
Hg	10	50	50
Cr	5 10	50	50
Br	10	50	50

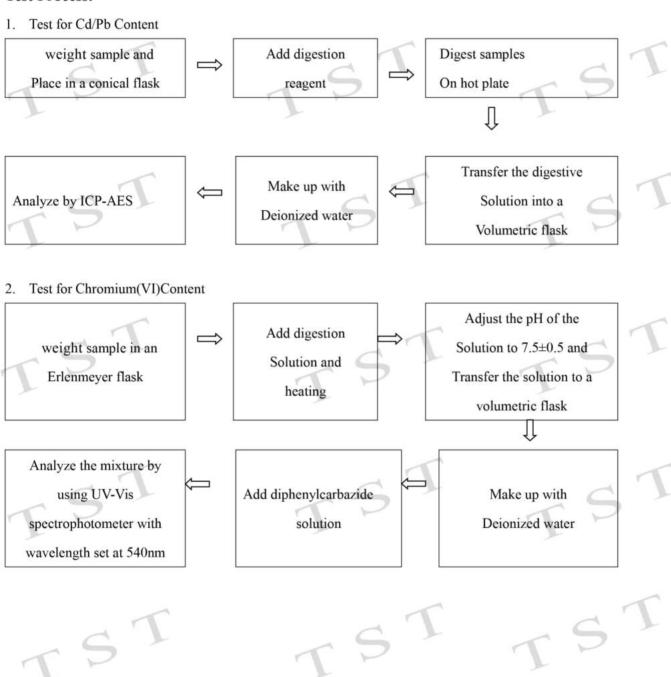
Note:

- -BL = Under the XRF screening limit
- -OL = Furture chemical test will be conducted while result is above the screening limit
- -X =The symbol"X"marks the region where further investingation in necessary
- -3σ=The reproducibility of analytical instruments
- -LOD=Detection limit

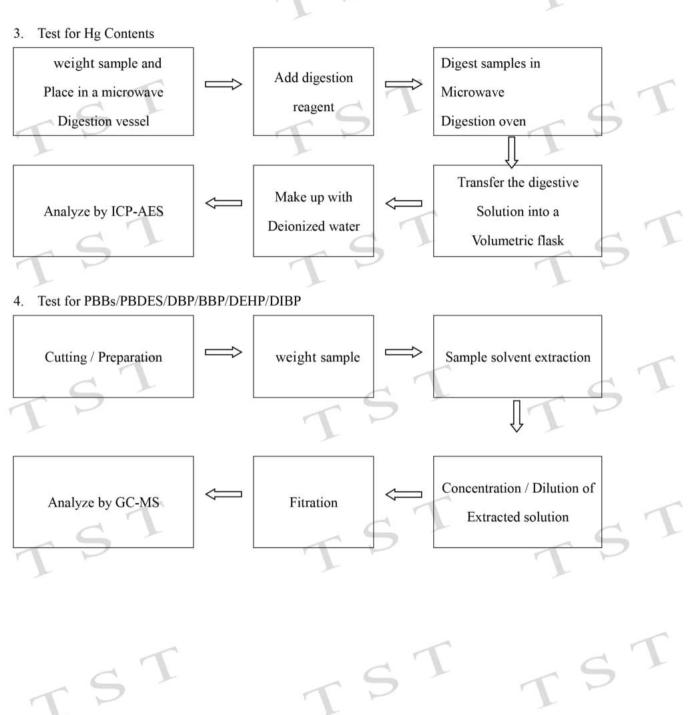
Report No: TST2020052633-3RR Date:Jun.05,2020 Page 9 of 12

3. Wet chemical test

1	N:		
Test Item(s)	Test Method	Test Equipment	MDL
Pb	IEC62321-5:2013	ICP-AES	2
Cd	IEC62321-5:2013	ICP-AES	2
Hg	IEC62321-4:2017	ICP-AES	2
Cr(VI)	IEC62321-7-1:2015 IEC62321-7-2:2017	UV-Vis	2
PBB	IEC62321-6:2015	GC-MS	5 5
PBDE	IEC62321-6:2015	GC-MS	5
Dibutyl Phthalate(DBP)	IEC62321-8:2017	GC-MS	30
Benzylbutyl Phthalate (BBP)	IEC62321-8:2017	GC-MS	30
Di-(2-ethylhexyl) Phthalate(DEHP)	IEC62321-8:2017	GC-MS	30
Diisobutyl phthalate (DIBP)	IEC62321-8:2017	GC-MS	30


Note:

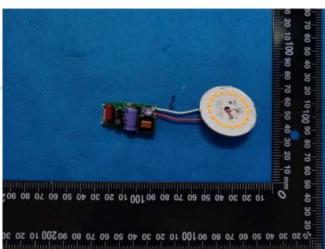
- mg/kg= ppm=0.0001%
- -ND=Not Detected(<MDL)
- MDL = Method Detection Limit
- -- = No Testing
- -Negative = Absence of Cr(VI), the detected Cr(VI) concentration in the boiling water extraction solution is less than 0.02 mg/kg with 50cm² sample surface
- -*=According to 2011/65/EU Annex, point 6-Lead as an alloying element is steel containing up to 0.35% lead by weight, aluminum containing up to 0.4% lead by weight and as a copper alloy, containing up to 4% lead by weight can be exempted.

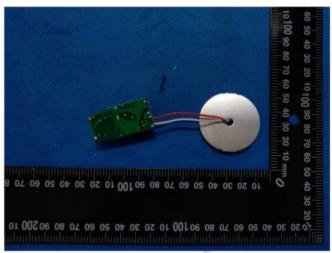

Report No: TST2020052633-3RR Date:Jun.05,2020 Page 10 of 1

Test Process:

Report No: TST2020052633-3RR Date:Jun.05,2020 Page 11 of 12






Report No: TST2020052633-3RR Date:Jun.05,2020 Page 12 of

Sample photo:

*** End of Report ***

SAFETY TEST REPORT

MEASUREMENT AND TEST REPORT

Models: YR-QP01 YR-QP02, YR-QP03, YR-QP04, YR-QP05, YR-QP06

June 05, 2020

This Report Concerns: **Equipment Type:** LED Bulb Original Report EN 62560: 2012+A1:2015 Test Standard: Report Number: CTB200603011SX June 03-04, 2020 Test Date: Consignment test Test category: Shenzhen CTB Testing Technology Co., Ltd. Prepared By: Floor 1&2, Building A, No. 26 of Xinhe Road, Xinqiao Community, Xinqiao Street, Baoan District, Shenzhen, Guangdong, China Tel: 4008-258-120 E-mail: ctb@ctb-lab.com Web: http://www.ctb-lab.com

Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior written consent of Shenzhen CTB Testing Technology Co., Ltd.

TEST REPORT

EN 62560

Self-Ballasted LED-Lamp for general lighting services by voltage > 50V Safety specifications

Report reference No.: CTB200603011SX

Date of issue..... : June 05, 2020

Testing laboratory

Name...... : Shenzhen CTB Testing Technology Co., Ltd.

Address...... : Floor 1&2, Building A, No. 26 of Xinhe Road, Xinqiao Community, Xinqiao

Street, Baoan District, Shenzhen, Guangdong, China

Client

Name :

Address :

Test specification

Standard..... : EN 62560: 2012+A1:2015

Test procedure.....: Safty report

Procedure deviation...... : N.A.

Non-standard test method.. : N.A.

Test Report Form No...... IEC62560B

TRF originator DEKRA Certification B.V.

Master TRF 2015-11-27

Copyright © 2014 IEC System of Conformity Assessment Schemes for Electrotechnical Equipment and Components (IECEE System). All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the IECEE is acknowledged as copyright owner and source of the material. IECEE takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

If this Test Report Form is used by non-IECEE members, the IECEE/IEC logo and the reference to the CB Scheme procedure shall be removed.

This report is not valid as a CB Test Report unless signed by an approved CB Testing Laboratory and appended to a CB Test Certificate issued by an NCB in accordance with IECEE 02.

Test item

Description: LED Bulb

Model No.: YR-QP01 YR-QP02, YR-QP03, YR-QP04, YR-QP05, YR-QP06

Trade Mark.....: /

Manufacturer.....:

Address....:

Rating(s)..... : 100-240V~ 50/60Hz, 7.5W

Particulars: test item vs. test requirements	
Equipment mobility:	Self-Ballasted Equipment
Class of equipment	Class II
Degree of protection:	IPX0
Supply construction:	E27 lamp cap
Possible test case verdicts:	A A A A A A
- test case does not apply to the test object:	N/A C C C C C C
- test object does meet the requirement:	P(Pass)
- test object does not meet the requirement:	F(Fail)
Testing	2 2 2 2 2 2
Date of receipt of test item:	June 03, 2020
Date (s) of performance of tests:	June 03-04, 2020
Laboratory sample number	200603005-1X
Sample appearance and function are in normal condition, yes or no:	Yes
Ambient temperature:	24-26℃
Ambient humidity:	60-65%
General remarks:	

The test results presented in this report relate only to the object tested.

This report shall not be reproduced, except in full, without the written approval of the Issuing testing laboratory.

Laboratory CTB. The authenticity of this Test Report and its contents can be verified by contacting CTB, responsible for this Test Report.

"(see Enclosure #)" refers to additional information appended to the report.

"(see appended table)" refers to a table appended to the report.

Throughout this report a \square comma / \boxtimes point is used as the decimal separator.

General product information:

- The apparatus is indoor used only.
- The max. operated temperature is considered as 25 °C.
- Instructions and equipment marking related to safety is applied in the language that is acceptable in the country in which the equipment is to be sold.
- Self-ballasted Non-SELV LED lamps, integrated with E27 lamp cap, non-dimmable.
- Series models YR-QP01 YR-QP02, YR-QP03, YR-QP04, YR-QP05, YR-QP06.. are identical for construction, working principle and main components listed in below table ANNEX 1 The only difference is model name and outlook appearance for decoration. All tests were performed on model YR-QP01

Copy of marking plate:

LED Bulb

Model: YR-QP01

Rated: 100-240V~ 50/60Hz, 7.5W E27

PF:>0.95

Shenzhen Yarrae Technology Co., Ltd.

MADE IN CHINA

Remark for above marking:

- 1. The height of graphical symbols shall not be less than 5 mm;
- 2. The height of letters and numerals shall not be less than 2 mm;
- 3. The main rating label was attached in enclosure,

Summary of testing:

The submitted sample were tested and found to compliance with requirements of the standards EN 62560: 2012+A1:2015.

Testing procedure and testing location

Laboratory name......: Shenzhen CTB Testing Technology Co., Ltd.

Testing locatioNddress: : Floor 1&2, Building A, No. 26 of Xinhe Road, Xingiao Community, Xingiao

Street, Baoan District, Shenzhen, Guangdong, China

Testing procedure : TL \(\times \) RMT \(\times \) SMT \(\times \) WMT \(\times \) TMP \(\times \)

Tested By : Humberot Huang

(Test Engineer)

Reviewed By : Kubo Lee

(Supervisor)

Approved By : Simon Lee

(Chief Engineer)

Kubo Lee

	EN 62560		
Clause	Requirement + Test	Result - Remark	Verdict
4	GENERAL REQUIREMENTS	** ** ** ** **	P
4.1	The lamp shall be so designed and constructed	0, 0, 0, 0,	P
ςΨ __ ς	that in normal use cause no danger to the user.		25.0
4.2	Self-ballasted LED-Lamp are non-repairable.	9 9 9 9	Р
5	MARKING	0 0 0	P
5.1	Mandatory marking	15° 15° 15° 15	Р
7.6	- mark of origin	6 6 6 6	P
5" ,5	- rated supply voltage (V):	100-240V	Р
40 4	- rated wattage (W):		Р
1 0		CONTRACTOR	Р
5.2	Addition marking	A A A	N/A
Y 67	- burning position	0 0 0	N/A
4	- rated current (A):	0 0 0	N/A
0	- weight significantly higher	0 0 0 0	N/A
\$ A	- special conditions or restrictions	19 19 19 1	N/A
0.7	- not use suitable for water	0, 0, 0, 0,	N/A
5.3	Marking durable and legible	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Р
20	rubbing 15 s water, 15 s petroleum; marking legible	0 0 0 0	Р
6	INTERCHANGEABILITY		Р
6.1	Cap interchangeability in accordance with EN 60061	1 9 9 9 3	Р
\$ A	Gauge in accordance with EN 60061-3	All applicable dimensions comply with the standard sheet.	P
6.2	Bending moment	. 41 41 41 4	Р
10	Bending moment imparted by the lamp at the lampholder	0 0 0 0	Р
57 5	E27: 2.0Nm	15° 15° 15° 15	Р
0. /	an axial pull of 40N or a bending moment of 3Nm	0 0 0 0	N/A
F 65	GU10 Bending moment: 0.1Nm	N N N N	N/A
7	PROTECTION AGAINST ACCIDENTAL CONTACT	WITH LIVE PARTS	Р
4 A	Internal, basic insulated or live metal parts not accessible	0 0 0 0 0 V	P
0	Tested with a test finger with a force of 10 N	0, 0, 0, 0,	Р
57 5	Compliance checked with appropriate gauges	15° 5° 5° 5	AP ⁷
	0 0 0 0 0	0 0 0	\cup

Page 6 of 11 Report No.: CTB200603011SX

N/A

N/A

			-
Clause	Requirement + Test	Result - Remark	Verdic
8.2	After storage 48 h at 91-95% relative humidity and 2 insulation resistance with d.c. 500 V (M Ω):	0-30 °C measuring of	Р
P 6	\geq 4 $M\Omega$ for double or reinforced insulation	>100 MΩ	Р
in The	The current flowing between the part concerned and earth is measured and does not exceed 0,7 mA (peak) or 2 mA d.c.	CUB CUB CUB CU	th Child
P. K	For frequencies above 1 kHz, the value does not exceed the limit of 70 mA (peak)	10 10 10 10 10 10 10 10 10 10 10 10 10 1	N/A
P 16	The voltage bewteen the part concerned and any accessible part is not more than 34V (peak)	A A A A	P
8.3	Immediately after clause 8.2 electric strength test for	1 min	P
W . W	HV type cap	4000V	Р
4	No flashover or breakdown	(see appended table)	Р
9 0	MECHANICAL STRENGTH		-0
T. C.	Torsion resistance of unused lamps	" " " " " " " " " " " " " " " " " " "	Р
9.1	Torque test	0 0 0 0	Р
V 18	B 15 d Cap1,15 Nm	18 18 18 18 18	N/A
D= 2	B 22 d Cap3,0 Nm	A A A	N/A
A 90	E 11 Cap	55 55 55 5	N/A
45 4	E 12 Cap	0.0.0	N/A
1	E 14 Cap1,15 Nm	S S S S	N/A
4 1	E 17 Cap	0.0.0	N/A
0	E 26 or E27 Cap	S S S S	Р
4 1	GX 53 Cap3,0 Nm	A 19 19 1	N/A
9.2	Torsion resistance of lamps after a defined time of u	sage	N/A
9 2	Torsion resistance of used lamp	Under consideration.	N/A
9.3	Repetition of clause 8	0, 0, 0, 0	○ P
To oth	Clause 8 shall comply after the mechanical strength test.	chi chi chi	Р
10	CAP TEMPERATURE RISE		P
P A	The cap temperature rise Δt_{s} of the lamp shall not exceed 120 K.	(see appended table)	P
11	RESISTANCE TO HEAT	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N/A
0	Parts of insulating material retaining live parts in pos	sition, ball-pressure test:	N/A
TO ST	- part; test temperature (°C)	See appended table	N/A

- part; test temperature (°C):

part; test temperature (°C)

		Page 7 of 11	Report No.: CTB	200603011SX
	5 4 4 4	EN 62560	4 4 4 4	40 40
Clause	Requirement + Test		Result - Remark	Verdict

12	RESISTANCE TO FLAME AND IGNITION		O P
	Parts of insulating material retaining live parts in position and external parts of insulating material preventing electric shock glow-wire test 650 °C	PCB; E27 cap plastic	Y CAP
1	- flame extinguished within 30 s	1 5 5 5 5 B	Р
.Os	- no flaming drops igniting tissue paper	O O O O	P

13	FAULT CONDITIONS		N/A
13.2	Extreme electrical conditions (dimmable lamps)		N/A
49	Lamp withstands overpower condition >15 min.	8 40 40 40	N/A
5 65	Lamp fails safe after 15 min overpower condition	10 To 10 TO	N/A
4 6	Lamp with automatic protective device or power limiter, test performed 15 min. At limit.	CAR AR AR	N/A
13.3	Extreme electrical conditions (non-dimmable lamps)	Р
F" 35	Lamp withstands overpower condition >15 min.	15 5 5 5	Р
45	Lamp fails safe after 15 min overpower condition	8 40 40 40	P
	Lamp with automatic protective device or power limiter, test performed 15 min. At limit.	0,0,0,0	Р
13.4	Short-circuit across capacitors	(see appended table)	Р
13.5	Fault conditions: where diagram indicates fault condition impairs safety, electronic components have been short-circuited or disconnected	(see appended table)	P
13.6	When operated under fault conditions the lamp	0 10 10 10 1	Р
0	- does not emit flames or molten material	0, 0, 0, 0,	Р
P &	- does not produce flammable gases or smoke	1 29 29 29 X	Р
0	- live parts not accessible	0,0,0,0	○ P
2. C. C.	After the tests the insulation resistance with d.c. 1000 V complies with requirements of Cl. 8.1	Charles Charles	P

14 (16)	CREEPAGE DISTANCES AND CLEARANCES		Р
P 15	Creepage distances and clearances according to Table 3 and 4 of EN 61347-1, as appropriate	(see appended table)	P
450 4	Printed boards see clause 14 of EN 61347-1	2 4 4 4	N/A
51 ,5	Insulating lining of metallic enclosures	1,51,51,51,5	N/A

15	Abnormal operation	N/A
4	Self-ballasted lamps shall not create hazard under abnormal operating conditions.	N/A

~ ~ /	Page 8 of 11 EN 62560		TB200603011SX			
Clause	Requirement + Test	Result - Remark	Verdict			
16	Test conditions for dimmable lamps	A 18 18	N/A			
9 6	Test shall be carried out at maximum power setting for Clause 10 and Clause 17.	A A A	N/A			
17	PHOTOBIOLOGICAL SAFETY	A 4 4	N/A			
17.1	UV radiation	0 0 0	N/A			
P 3	The LED lamp doesn't exceed 2mW/klm	29 29 23	N/A			
17.2	Blue light hazard	0 0 0	O N/A			
(P . K)	Assessed according to IEC TR 62778	" " " " " " " " " " " " " " " " " " "	N/A			
0	LED lamps shall be RG0 or RG1	0 0 0	N/A			
18	Ingress protection	0,000	N/A			
18.1	Lamps shall be suitable for water contact unless marked with Figure 6.					
18.2	The lamp is subjected to an IPX4 test according to					
	IEC 60598-1.		N/A			
	IEC 60598-1.		CLA CLA			
	IEC 60598-1.		CLA CLA			
	IEC 60598-1.		CLA CLA			

Page 9 of 11 Report No.: CTB200603011SX

	C C C C	rage 9 01 11	Report No., CTD	20000301137
40 4	0 0 0 0	EN 62560	0 0 0 0	0 0
Clause	Requirement + Test	N W W	Result - Remark	Verdict

ANNEX 1	TABLE: Critical con	nponents inform	nation		P
Object / part No.	Manufacturer/ trademark	Type / model	Technical data	Standard	Mark(s) of conformity ¹⁾
E27 Lamp cap	Various	Various	2A, 500VAC	EN 60238	Approved Tested with appliance
Plastic of lamp cap	Various	Various	V-0, 130℃	UL 94	UL
LED driver	Various	Various	INPUT: 100-240V AC	IEC 61347-1	Approved Tested with appliance
LED Modual	Various	Various	CCT=3500K,	IEC 62031	Tested with appliance

Supplementary information:

¹⁾ Provided evidence ensures the agreed level of compliance.

8.3	Electric strength		35 35 35 35 B
Test points	s	Test voltage	Results
Between	То		
Live parts	enclosure	4000V	No breakdown

10	Temperature measurements, thermal tests of Se	ction 10	Р
7 6	Type reference:	YR-QP01	.—.
· 4 /	Lamp used:	LED Bulb	
0	Lamp control gear used :	Integrated	
P A	Mounting position of luminaire:	Normal use	12
. 0	Supply wattage (W)	7.25W	_
50 1	Supply current (A):	AND AND AND AND	-
250	Table: measured temperatures corrected for ta = 25	°C:	Р
V 3	- abnormal operating mode:	No abnormal operation	:
0	- test 1: rated voltage:	0 .0 .0 .0	-
	- test 2: 1,06 times rated voltage or 1,05 times rated wattage	240V*1.06	
57 6	- test 3: Load on wiring to socket-outlet, 1,06 times voltage or 1,05 times wattage		-
ev of	- test 4: 1,1 times rated voltage or 1,05 times rated wattage	20, 20, 20, 20,	×
5° 6'	Through wiring or looping-in wiring loaded by a current of A during the test:	- Charles Charles	3 <u></u>
tempera	ature (°C) of part Clause 10 – normal	Clause 12.5 – at	onormal

		67 <u>-6767.</u> 4	Б ОТВ	00000001101
67	6 6 6 6	Page 10 of 11	Report No.: CTB	200603011SX
		EN 62560		

	test 1	test 2	test 3	limit	test 4	Limit
E27cap	4 4	48.7	, -a	120	0 0	e -e
PCB	S 6	40.6	6 P	130		20
Plastic of lamp cap	4 4	42.6	0 .0	130	0 0	0 .0
Ambient	3 - 3	25.0	d2 E	* c c	1 5 5	07

11	TABLE: Ball Pressure Test of Therm	oplastics	A. S. A. S. A.	N/A
Allowe	d impression diameter (mm)	≤ 2mm	0.0.0	
Part		Test temperature (°C)	Impression diam	eter (mm)
φ,	4 4 4 4 4 4	4 4 4	\$ _\$ _ \$	_4
Supple	mentary information: —	0 0 0 0	0 0	6 (
·Ψ	P P P P P P	V V V	\$ \$ P	~*
13	TABLE: tests of fault conditions	07 07 07 0	7 67 67	N/A

13 TABLE: tests of fault conditions	C C C N/A
Part Simulated fault Result	Hazaro

clearance cl and creepage distance decry at/of:			Up (V)	U rms. (V)	Required cl (mm)	cl (mm)	Required cr (mm)	cr (mm)
Minimum distances between live parts of different polarity		<420	<250	1.6	>1.6	2.5	>2.5	
Minimum distances between live parts and accessible parts		<420	<250	3.0	3.5	5.0	5.5	
pleme	entary information: -	\$. ¢	4	9 4	0 0	19 19	79	

Appendix Photo documentation

******End of this report*****